Ornstein-Zernike Behavior for Self-Avoiding Walks at All Noncritical Temperatures

نویسندگان

  • J. T. Chayes
  • L. Chayes
چکیده

We prove that the self-avoiding walk has Ornstein-Zernike decay and some related properties for all noncritical temperatures at which the model is defined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random path representation and sharp correlations asymptotics at high-temperatures

We recently introduced a robust approach to the derivation of sharp asymptotic formula for correlation functions of statistical mechanics models in the high-temperature regime. We describe its application to the nonperturbative proof of Ornstein-Zernike asymptotics of 2-point functions for self-avoiding walks, Bernoulli percolation and ferromagnetic Ising models. We then extend the proof, in th...

متن کامل

A pr 2 00 3 Random path representation and sharp correlations asymptotics at high - temperatures

We recently introduced a robust approach to the derivation of sharp asymptotic formula for correlation functions of statistical mechanics models in the high-temperature regime. We describe its application to the nonperturbative proof of Ornstein-Zernike asymptotics of 2-point functions for self-avoiding walks, Bernoulli percolation and ferromagnetic Ising models. We then extend the proof, in th...

متن کامل

Ballistic behavior for biased self-avoiding walks

For self-avoiding walks on the d-dimensional cubic lattice defined with a positive bias in one of the coordinate directions, it is proved that the drift in the favored direction is strictly positive. c © 2008 Elsevier B.V. All rights reserved. Keyword: Biased self-avoiding walks

متن کامل

J an 1 99 8 A self - consistent Ornstein - Zernike approximation for the Random Field Ising model

We extend the self-consistent Ornstein-Zernike approximation (SCOZA), first formulated in the context of liquid-state theory, to the study of the random field Ising model. Within the replica formalism, we treat the quenched random field as an annealed spin variable, thereby avoiding the usual average over the random field distribution. This allows to study the influence of the distribution on t...

متن کامل

Self-consistent Ornstein-Zernike approximation for the Sogami-Ise fluid.

We generalize the self-consistent Ornstein-Zernike approximation (SCOZA) to a fluid of particles with a pair potential consisting of a hard-core repulsion and a linear combination of Sogami-Ise tails, w(r)=-epsilonsigma summation operator (nu)(K(nu)/r+L(nu)z(nu))e(-z(nu)(r-sigma)). The formulation and implementation of the SCOZA takes advantage of the availability of semianalytic results for su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1986